On Bayes ’ S Theorem for Improper Mixtures

نویسنده

  • Han Han
چکیده

Although Bayes’s theorem demands a prior that is a probability distribution on the parameter space, the calculus associated with Bayes’s theorem sometimes generates sensible procedures from improper priors, Pitman’s estimator being a good example. However, improper priors may also lead to Bayes procedures that are paradoxical or otherwise unsatisfactory, prompting some authors to insist that all priors be proper. This paper begins with the observation that an improper measure on Θ satisfying Kingman’s countability condition is in fact a probability distribution on the power set. We show how to extend a model in such a way that the extended parameter space is the power set. Under an additional finiteness condition, which is needed for the existence of a sampling region, the conditions for Bayes’s theorem are satisfied by the extension. Lack of interference ensures that the posterior distribution in the extended space is compatible with the original parameter space. Provided that the key finiteness condition is satisfied, this probabilistic analysis of the extended model may be interpreted as a vindication of improper Bayes procedures derived from the original model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bayes’ Theorem for Improper Mixtures1 by Peter Mccullagh

Although Bayes’s theorem demands a prior that is a probability distribution on the parameter space, the calculus associated with Bayes’s theorem sometimes generates sensible procedures from improper priors, Pitman’s estimator being a good example. However, improper priors may also lead to Bayes procedures that are paradoxical or otherwise unsatisfactory, prompting some authors to insist that al...

متن کامل

Bayes Theorem for Improper Priors

Improper priors are used frequently, but often formally and without reference to a sound theoretical basis. A consequence is the occurrence of seemingly paradoxical results. The most famous example is perhaps given by the marginalization paradoxes presented by Stone and Dawid (1972). It is demonstrated here that the seemingly paradoxical results are removed by a more careful formulation of the ...

متن کامل

Conditional Probability Spaces

Improper priors are used frequently, but often formally and without reference to a sound theoretical basis. The present paper demonstrates that Kolmogorov’s (1933) formulation of probability theory admits a minimal generalization which includes improper priors and a general Bayes theorem. The resulting theory is closely related to the theory of conditional probability spaces formulated by Renyi...

متن کامل

Improper Priors Are Not Improper

It is well known that improper priors in Bayesian statistics may lead to proper posterior distributions and useful inference procedures. This motivates us to give an elementary introduction to a theoretical frame for statistics that includes improper priors. Axioms that allow improper priors are given by a relaxed version of Kolmogorov’s formulation of probability theory. The theory of conditio...

متن کامل

Fast Exact Bayesian Inference for the Hierarchical Normal Model: Solving the Improper Posterior Problem

The hierarchical normal-normal model considered. Standard Empirical Bayes methods underestimate variability because they ignore uncertainty about the hyperparameters. Bayes' theorem solves this problem. We provide fast, exact inference that requires only a simple, univariate numerical integration to obtain the posterior distribution of the means. However, when standard, scale-invariant, vague p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011